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Abstract: An analytical solution to the linearized problem describing the propagation of
pressure and fluid velocity disturbances in an inclined section of a pipeline with an air cap is
obtained taking into account the gravitational effect, friction forces, and a local inertial
component. The effect of the air cap is modeled based on I.A. Charny's approach. The initial
equations formulated based on N.E. Zhukovsky's theory are solved using the method of
separating variables in the presence of mixed boundary conditions. Based on the obtained
solution, numerical modeling is performed, which makes it possible to identify the nature of
changes in hydrodynamic disturbances depending on a number of factors, including the volume
of the air cap.
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Introduction

The processes of formation and propagation of disturbances in pipelines are studied on the basis
of quasi-one-dimensional equations developed by N.E. Zhukovsky [1,2]. He was the first to
formulate a system of quasi-one-dimensional equations that simultaneously takes into account
both the hydrodynamic flow velocity and the propagation velocity of small disturbances in the
medium-pipeline system. In addition, Zhukovsky conducted theoretical and experimental studies
devoted to the propagation of compression and rarefaction waves in pipelines.

The development and wide practical application of pipeline networks is inextricably linked with
in-depth theoretical research. Various mathematical models of pipeline transport of weakly
compressible and super compressible media [3], as well as hydrodynamic mixtures within the
framework of Newtonian and non-Newtonian fluids [4], covering both linear and nonlinear, as
well as complete and simplified descriptions, have been developed. Analytical [5,6], numerical
[7,8] and approximate methods for solving problems have been actively developed, both for the
entire pipeline network and for its individual sections - with or without taking into account
various force and energy factors.

In the model, the pipeline slope is assumed to be constant. In addition, the local component of
the fluid inertia force and the resistance force according to the linearized Darcy-Weisbach
formula are taken into account in the momentum conservation equation. The continuity equation
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is presented through the propagation velocity of small pressure disturbances in the pipe-fluid
medium.

The linearized equation for the flow velocity is solved by the Fourier method. By substituting the
found solution for the velocity problem, a transformed equation for conservation of mass is
obtained, and by integrating it, a solution for the problem for hydrostatic pressure is obtained.

Numerical results of the process of propagation of compaction and rarefaction waves under
conditions of damping by an air cap for individual variants of horizontal and inclined pipelines
are presented and analyzed.

Statement of the problem

The objective of the problem is to study the dynamic state of an elementary section of a pipeline
during the transition from one operating mode to another. A pipeline with a length | and
diameter is considered Dg. The slope of the pipeline route is constant and is Sin¢ . The initial

condition for the velocity is taken to be
w(x,0)=w, = const.

The initial pressure distribution takes into account the input pressure p,,, the pressure drop due
to friction and gravity:

p(x,0)= p,, — p(2aw, +gsina)x.

*

A
Here 2a = =const; A — drag coefficient; W, — characteristic speed of the object under

dy

consideration (in this case, the averaging parameter); Sina =d—; y(X) — leveling height of
X

the pipeline axis.

The input pressure value is set

p(0,t) = p,, =const.

The intensity of liquid extraction from the end of the section is t >0 Q(t) (M3 /C). An air

cap is installed before the exit from the section. The volume and pressure of the gas in the air cap
in an undisturbed state are V,and p,. We formulate this boundary condition, reflecting the

connection of the air cap, according to I.A. Charny [1].
Before the air cap, the volumetric flow rate of the liquid is ( f\N)X=I , where f = 7D? /4 is the

cross-sectional area, and D is the diameter of the pipeline. At the outlet, as already noted, the
volumetric flow rate of the liquid is Q(t). Their difference leads to a change in the volume of

gas in the air cap over time:

2= ()., -Qt).

When changing the volume of the liquid, the change in the temperature of the gas can be
neglected. Therefore, the new state of the air p and V, — Yy satisfies the condition:

PV, = p(vo - Y)-
That is, the new value of pressure in the air cap is
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p:

Because the change Y is small (y <<V0), then we can accept

P, y
P=—"""=P, 1+J
1-— y [ Vo

V

From here we find

P=Poyy g &Y _Vodp
p, ~  dt p,dt

0

y:

dy

By equating the right-hand sides of the two equalities with respect to , We obtain the

condition at the exit from the section:

Vo dp,, _ B
b dt (fw),., —Q(t).

We model the equations of the state of the section based on the equations of N.E. Zhukovsky [1]
with an amendment — taking into account the force of gravity:

%P _ (@+ 2aw + g sin a)
x Pl |
op , OW

——=pC" —.
ot o

Eo
system; p,, K is the density of the liquid at rest and its modulus of elasticity; E, & Young's

modulus of the material from which the pipeline is made and the thickness of the pipe
(6 << D).

D -1/2
Here C = ('i‘)+ 'OOJ is the speed of propagation of small disturbances in the liquid-pipe

ap

Since Eit can be expressed according to the second equation of the system, the second

boundary condition of the problem for speed Wtakes the form:

ow(l, t)
-f =w(l,t)—w,.
ot )

When the damper is disconnected, this condition becomes a condition of the first kind :

W(I ,t) = W, . From here on, the notation is used

ﬁ:wM.
fp,
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In general, this formulation of the problem differs from other problems in that both the slope of
the route and the presence of a damper at the end of the section are taken into account.

Analytical solution of the problem

For a constant value of the input pressure, we will single out the problem with respect to the
speed. The following conditions are appropriate for it:

w(x,0) =w,, w:&
ow(0,t) ow(l,t) ~
T_O’ﬁ—ax +W(l,t)=w,,

where we restrict ourselves to considering the case when the new velocity at the exit from the
section is W, . Here the boundary condition at X =0 corresponds , according to the equation of

op(0,t)
ot

conservation of mass, to the case =0,i.e.p(0,t)= py.

In this case, a telegraph-type equation is formed from the original system [9]:

o’w ow , 0w
,t2a_=c¢" .

ot ot OX

To apply the Fourier method, the boundary conditions of the problem must be brought to a

homogeneous form. In our case, this is possible if we accept the replacement [9,10]

u(X,t)=w(x,t)—wp.

In this case, the equations, initial conditions and the first boundary condition are written simply
through u(x,t), and the second boundary condition takes on a homogeneous form:

auggi(,t)+;u(|,t)=0.

We seek a solution u(x,t) in the form:

u(x,t)= X(x)Y(t).
Then, according to the rules of the Fure method [9] , we have

s xW__.

Y (t) X (x)

Here A > 0, otherwise we get a trivial (zero) solution to the problem.

Let's compose an autonomous equation for X (x):

X"(x)+ A2 X'(x)=0.

We seek its solution in the form

X (x)=Bsin Ax + C cos Ax.

The implementation of boundary conditions leads to particular eigenfunctions [ 9,10]:
X, (x)=cosA,x,
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where are the eigenvalues A . problems are positive roots of the characteristic equation
tgA | = i

PA
Proved orthonormality of X (x) eigenfunctions [ 9,10] :
L _ HXn(X)”2=E(|+ﬂSinzﬂ,n|) nmpu N =m,
I3|ninx5|nimxdx: 2
0 mpu n=m.
Finding eigenfunctions over time yielded the equation:
Y/(t)+2aY/(t)+c*A 7Y (t)=0.
The characteristic equation of this second-order differential equation has the form:
s,> +2as, +c1.2 =0.
When designating
D, =a’-c’A’
we will receive

(Sn)l,z :_ai\/[Tn'

In this regard we have:

a‘(Ahch\/iHBsh\/it) npu D, >0,

Y,(t)=<e"(A, +Bt) npu D, =0,

e‘a‘(Ah COS\/mt+ B,sin Mt) npu D, <0.
(1) is

& (Achy/Dyt + Byshy/Dt) mpu D, >0
u(x,t)zi at(An +B,t) mpu D, =0 cos A, X.

=1
n e‘at(Ah c0s./| Dyt + anin«/|Dn|t) npu D, <0

In a particular case f — 0 (i.e., when V, — 0) taking into account the condition, X,(0)=0
2n — 1 T

Thus, the solution u( X

the eigenfunctions will be X (X)=c0SA X when A =

X0 =2

Using the orthonormality of the eigenfunctions and according to the initial conditions, the values
of the coefficients are determined

[5]. In this case ,
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A, = Yo AsmAnI B, _%,
ﬂﬂHXnH In

D, mpu D, >0,

Here y, =<1 npu D,, =0,

,”Dn‘ npu D, <0.
The final solution to the problem regarding the flow velocity is:
I a
Ch«, Dnt + FSI’]«, Dnt IIpu DI’] >0
n

W(x,t):WA+e“"“§:A1 1+at mpu D, =0 cos A, X.
COS«/ t+\/_sm«/ tanD <0

For ##0 the values of the eigenvalues 4 we find a numerical solution of the characteristic
equation. First, we identified the boundary of the interval of membership nof the -th root :

(n-1)z <(n—0,5)7r
| |

half [11]. In this case, the largest number of approximation steps 42 was sufficient to ensure the
accuracy of the calculation 4_ up to 10729 at 1 =1000m.

< . Then the values A | were refined by dividing the segment in

n

To find the hydrostatic pressure, the second equation of the original system was integrated over
time fromOto t:

ow(x,0)
OX

The minuend is known from the initial condition. The subtrahend is calculated using the newly
obtained expression for W(X,t). Omitting the details, we present the final result:

P(X,t) = poo — p(2aw, + gsina ) x —

2a(e‘atch\/D7nt—1) [7n+—j e *'sh,/D,t npn D, >0

—pii —Za(e‘ 1)+at 2 1pu D,=0 sin A, X.

Za(e‘atcosﬂ/\Dn\t—l) [%__J *sin/|D,t npu D, <0

Discussion of results

p(x,t)= p(x,0)— poc j do.

Based on the presented material, a calculation program was compiled in the Pascal ABC
environment, where the results were presented in the form of tables. Graphs were constructed
using the Excel program . The characteristic equation was solved using the dichotomy method

with an accuracy of 107°. The first 1000 terms of the Fourier series were taken into account in
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the calculations. The step along the length of the section was | /100, and the step along the time
was | / (1OC) . The calculation was carried out from the Oth to the 600th time step.

Cases sin a =0, +0.1with a section length of 1000 m were considered . The section diameter
was 20 cm, and the resistance coefficient 4 =0.018 was . The averaging parameter had a value
of W, =5 m/c, the density of the liquid in the unperturbed state was 1000.0xe/ »°, and the
propagation speed of small pressure disturbances was ¢ =1200 m/c.

The volume of the air cap connected to the end of the section was taken as 1.0, 0.100, 0.010,
0.001, 0.0001 and 0.00001 cubic meters. The pressure in the air cap without voltage was taken as

P, =0.1Mlla.

W (0,t), m/s
10
|
' 11
|
4
2 G =
0 - —-".""'——.__—. — LS
0 10 20 30 40 50

——0.00001 —0.0001 —0.001 ==—0.01 =——0.1 = =1

Fig. 1. Temporal change in inlet velocity for different values of air cap volume V. | =1000 x,
D =0.20m, py, =6.5MIIa, W, =5m/c, A=0.018, ¢=1200m/c, p,=0.1MI1a,
sina=0
Fig. 1 and 2 show the changes in the velocity value at the ends of the section for different values
of the air cap volume. The lower graphs in them reflect the end velocities at V, =1.000 M.

These graphs are not complete, since the flow velocity subsequently passes to its limiting value
W, . That is, at large volumes of the air cap, the establishment occurs slowly, but without

oscillations. It is evident that at the end of the section where the air cap is installed, the amplitude
of the velocity disturbances is lower than in the inlet section. It is evident that the end velocities

increase monotonically. The graphs at V, = 0.1 .’ first increase from 0 to 5 m/ ¢, and then the

oscillatory process is damped. Two conditional maxima are clearly visible in the graphs. More
than three conditional maxima were observed in the graphs at V. =0.00100 /"
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Fig. 2. Temporal change in the output velocity at different values of the air cap volumeV,,
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Fig. 3. Temporary change in outlet pressure at different values of air cap volumeV,

At smaller volumes of the air cap, the frequency of disturbances corresponds to the frequency of
disturbances when the air cap is switched off. In general, when the volume of the damper
decreases, the amplitude of the velocity disturbances at the ends of the section increases, and the
frequency of disturbances increases.

Let's move on to the analysis of the results obtained with positive (Sin a= 0.100) and negative
(sina =—0.100) slopes of the route.
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Fig. 4. Temporal changes in flow velocity in different sections of a linear section at
V, =0.010 4°.sina =0.100
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Fig. 5. Temporal changes in pressure in different sections of a linear section at V; =0.010 M.
sina =0.100

Fig. 4 shows graphs of the time change in flow velocity in different sections with
V, =0.010 M and maintaining the values of the remaining initial data. As can be seen from
the figure, minor differences in the results are observed around the primary velocity extremes.

The graphs of the time change of pressure in the sections corresponding to this calculation option
are shown in Fig. 5. The fluctuations (oscillations) of the pressure relative to the average
pressure value become noticeable with distance from the end of the section with the air cap. The
second feature of the graphs is the decrease in the pressure value in the sections depending on the
distance from the input section: an increase in distance leads to a greater pressure loss. In this
case, such a nature of the pressure change is also due to the positive slope of the pipeline route,
since a slope of was adopted Sina = 0.100.
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Conclusions

Taking into account the air cap included at the end of the section, a mathematical model of the
state of an elementary inclined and horizontal section of the pipeline was compiled, when a
constant pressure value is set at the inlet to the section, and a flow velocity at the outlet. In this
case, quasi-one-dimensional equations of conservation of momentum and mass are adopted
according to the model of N.E. Zhukovsky, taking into account the slope of the route, and the
condition for the damper is according to I.A. Charny [1].

The Fourier method was used to obtain a solution to the problem of flow velocity, and the
solution to the pressure dynamics was found by integrating the mass conservation equation.

The results of calculations obtained for horizontal and inclined sections for different values of
the air cap volume are discussed. It is revealed that at small values of the air cap volume,
velocity and pressure disturbances are formed, the frequencies of which coincide with the
frequencies of the solution of the problem without a damper. And at a large volume of the air
cap, the transition from one mode to another operating mode occurs smoothly.

The results showed that as the end of the air-bubble section was approached, the velocity and
pressure oscillations decreased.

It has been established that the frequency and amplitude of disturbances decrease with increasing
volume of the air cap. With large volumes of the air cap, the settling time increases.
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