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Abstract: An analytical solution to the linearized problem describing the propagation of 

pressure and fluid velocity disturbances in an inclined section of a pipeline with an air cap is 

obtained taking into account the gravitational effect, friction forces, and a local inertial 

component. The effect of the air cap is modeled based on I.A. Charny's approach. The initial 

equations formulated based on N.E. Zhukovsky's theory are solved using the method of 

separating variables in the presence of mixed boundary conditions. Based on the obtained 

solution, numerical modeling is performed, which makes it possible to identify the nature of 

changes in hydrodynamic disturbances depending on a number of factors, including the volume 

of the air cap.  

Keywords: pipeline, incompressible fluid, damper, resistance force, gravity, quasi-one-
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Introduction 

The processes of formation and propagation of disturbances in pipelines are studied on the basis 

of quasi-one-dimensional equations developed by N.E. Zhukovsky [1,2]. He was the first to 

formulate a system of quasi-one-dimensional equations that simultaneously takes into account 

both the hydrodynamic flow velocity and the propagation velocity of small disturbances in the 

medium-pipeline system. In addition, Zhukovsky conducted theoretical and experimental studies 

devoted to the propagation of compression and rarefaction waves in pipelines. 

The development and wide practical application of pipeline networks is inextricably linked with 

in-depth theoretical research. Various mathematical models of pipeline transport of weakly 

compressible and super compressible media [3], as well as hydrodynamic mixtures within the 

framework of Newtonian and non-Newtonian fluids [4], covering both linear and nonlinear, as 

well as complete and simplified descriptions, have been developed. Analytical [5,6], numerical 

[7,8] and approximate methods for solving problems have been actively developed, both for the 

entire pipeline network and for its individual sections - with or without taking into account 

various force and energy factors. 

In the model, the pipeline slope is assumed to be constant. In addition, the local component of 

the fluid inertia force and the resistance force according to the linearized Darcy-Weisbach 

formula are taken into account in the momentum conservation equation. The continuity equation 
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is presented through the propagation velocity of small pressure disturbances in the pipe-fluid 

medium. 

The linearized equation for the flow velocity is solved by the Fourier method. By substituting the 

found solution for the velocity problem, a transformed equation for conservation of mass is 

obtained, and by integrating it, a solution for the problem for hydrostatic pressure is obtained. 

Numerical results of the process of propagation of compaction and rarefaction waves under 

conditions of damping by an air cap for individual variants of horizontal and inclined pipelines 

are presented and analyzed. 

Statement of the problem 

The objective of the problem is to study the dynamic state of an elementary section of a pipeline 

during the transition from one operating mode to another. A pipeline with a length l and 

diameter is considered 0.D  The slope of the pipeline route is constant and is sin . The initial 

condition for the velocity is taken to be 

( ) constwxw ==
0

0, . 

The initial pressure distribution takes into account the input pressure 
00

p , the pressure drop due 

to friction and gravity: 

( ) ( )xgawpxp  sin20,
000
+−= . 

Here *2 ;
2

w
a const

D


= =    – drag coefficient; 

*
w  – characteristic speed of the object under 

consideration (in this case, the averaging parameter); sin ;
dy

dx
 =  )(xy  – leveling height of 

the pipeline axis. 

The input pressure value is set  

( ) 000,p t p const= = . 

The intensity of liquid extraction from the end of the section is 0t   ( ) ( )cмtQ /3
. An air 

cap is installed before the exit from the section. The volume and pressure of the gas in the air cap 

in an undisturbed state are 
0

V and 
0

p . We formulate this boundary condition, reflecting the 

connection of the air cap, according to I.A. Charny [1]. 

Before the air cap, the volumetric flow rate of the liquid is ( )
x l

fw
=

, where 
2 / 4f D=  is the 

cross-sectional area, and D  is the diameter of the pipeline. At the outlet, as already noted, the 

volumetric flow rate of the liquid is ( )tQ . Their difference leads to a change in the volume of 

gas in the air cap over time: 

( ) ( )tQfw
dx

dy
lx
−=

=
. 

When changing the volume of the liquid, the change in the temperature of the gas can be 

neglected. Therefore, the new state of the air p  and yV −
0

 satisfies the condition: 

( )yVpVp −=
000

. 

That is, the new value of pressure in the air cap is 
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yV

Vp
p

−
=

0

00 . 

Because the change y is small ( )
0

Vy  , then we can accept 









+

−

=
0

0

0

0 1

1
V

y
p

V

y

p
p . 

From here we find 

0

0

0 V
p

pp
y

−
=  and 

dt

dp

p

V

dt

dy

0

0= . 

By equating the right-hand sides of the two equalities with respect to 
dt

dy
, we obtain the 

condition at the exit from the section: 

( ) ( )tQfw
dt

dp

p

V
lx

lx −=
=

=

0

0 . 

We model the equations of the state of the section based on the equations of N.E. Zhukovsky [1] 

with an amendment – taking into account the force of gravity: 

2

2 sin ,

.

p w
aw g

x t

p w
c

t x

 



   
− = + +    


 − =
  

 

Here 

2/1

00

−









+=





E

D

k
c  is the speed of propagation of small disturbances in the liquid-pipe 

system; 
0

 , k  is the density of the liquid at rest and its modulus of elasticity; ,E   – Young's 

modulus of the material from which the pipeline is made and the thickness of the pipe 

( ).D   

Since 
t

p




it can be expressed according to the second equation of the system, the second 

boundary condition of the problem for speed w takes the form: 

( , )
( , ) .

A

w l t
w l t w

t



− = −
  

When the damper is disconnected, this condition becomes a condition of the first kind : 

( ), Aw l t w= . From here on, the notation is used 

0

0

2

fp

Vс
 = . 
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In general, this formulation of the problem differs from other problems in that both the slope of 

the route and the presence of a damper at the end of the section are taken into account. 

Analytical solution of the problem 

For a constant value of the input pressure, we will single out the problem with respect to the 

speed. The following conditions are appropriate for it: 

00
( ,0)w x w= , 

( ,0)
0

w x

t


=


, 

( )
0

,0
=





x

tw
, 

( )
( )

,
, A

w l t
w l t w

x



+ =


, 

where we restrict ourselves to considering the case when the new velocity at the exit from the 

section is Aw . Here the boundary condition at 0x =  corresponds , according to the equation of 

conservation of mass, to the case 
( )0,

0
p t

t


=


, i.e. ( ) 000, .p t p=   

In this case, a telegraph-type equation is formed from the original system [9]: 

2

2

2

2

2

2
x

w
c

t

w
a

t

w




=




+




. 

To apply the Fourier method, the boundary conditions of the problem must be brought to a 

homogeneous form. In our case, this is possible if we accept the replacement [9,10]  

( ) ( ), , Au x t w x t w= − . 

In this case, the equations, initial conditions and the first boundary condition are written simply 

through ( )txu , , and the second boundary condition takes on a homogeneous form: 

( )
( ) 0,

1,
=+




tlu

x

tlu


. 

We seek a solution ( )txu ,  in the form: 

( ) ( ) ( )tYxXtxu =, . 

Then, according to the rules of the Fure method [9] , we have 

( ) ( )
( )

( )
( )

22
−=


=

+

xX

xX

tY

tYatY
. 

Here 0 , otherwise we get a trivial (zero) solution to the problem. 

Let's compose an autonomous equation for ( )xX :  

( ) ( ) 02 =+ xXxX  . 

We seek its solution in the form 

( ) xCxBxX  cossin += . 

The implementation of boundary conditions leads to particular eigenfunctions [ 9,10]: 

( ) cosn nX x x= , 
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where are the eigenvalues 
n

 . problems are positive roots of the characteristic equation 




1
=ltg

n . 

Proved orthonormality of ( )xX
n

 eigenfunctions [ 9,10] : 

( ) ( )
2

2

0

1
sin при ,

2sin sin

0 при .

l
n n

n m

X x l l n m
x xdx

n m

 
 


= + =

= 




  

Finding eigenfunctions over time yielded the equation: 

( ) ( ) ( ) 02
22 =++ tYctYatY

nnnn
 . 

The characteristic equation of this second-order differential equation has the form: 

2 2 22 0n n ns as c + + = . 

When designating 

222

nn
caD −=  

we will receive  

( )
1,2n ns a D= −  . 

In this regard we have: 

( )

( )

( )

( )

при 0,

при 0,

cos sin при 0.

at

n n n n n

at

n n n n

at

n n n n n

e A ch D t B sh D t D

Y t e A B t D

e A D t B D t D

−

−

−

 + 



= + =

 + 


 

Thus, the solution ( )txu ,  is  

( )

( )
( )

( )
1

при 0

, при 0 cos .

cos sin при 0

at
n n n n n

at
n n n n

n
at

n n n n n

e A ch D t B sh D t D

u x t e A B t D x

e A D t B D t D



−


−

=
−

 + 
 
 = + =
 
 

+ 
  

  

In a particular case 0→  (i.e., when 0
0
→V ) taking into account the condition, ( )0 0nX  =  

the eigenfunctions will be ( ) xxX
nn
cos=  when 

l

n
n




2

12 −
=  [5]. In this case , 

( )
2

2 l
lX

n
= .  

Using the orthonormality of the eigenfunctions and according to the initial conditions, the values 

of the coefficients are determined 
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0
2

sin , .A n
n n n

nn n

w w aA
A l B

X




−
= =  

Here

при 0,

1 при 0,

при 0.

n n

n n

n n

D D

D

D D



 


= =




 

The final solution to the problem regarding the flow velocity is: 

( )
1

при 0

, 1 при 0 cos .

cos sin при 0

n n n

n

at
A n n n

n

n n n

n

a
ch D t sh D t D

D

w x t w e A at D x

a
D t D t D

D




−

=

 
+  

 
 = + + =
 
 

+  
 

  

For 0  the values of the eigenvalues
n


 
we find a numerical solution of the characteristic 

equation. First, we identified the boundary of the interval of membership n of the -th root : 

( ) ( )1 0,5
n

n n

l l

 


− −
  . Then the values l

n
  were refined by dividing the segment in 

half [11]. In this case, the largest number of approximation steps 42 was sufficient to ensure the 

accuracy of the calculation 
n

  up to 
1010−  at 1000=l m. 

To find the hydrostatic pressure, the second equation of the original system was integrated over 

time from 0 to t :  

( ) ( )
( )





−=

t

d
x

xw
cxptxp

0

2 ,
0,, 


 . 

The minuend is known from the initial condition. The subtrahend is calculated using the newly 

obtained expression for ( )txw , . Omitting the details, we present the final result: 

( ) ( )

( )

( )

( )

00 0

2

2

1
2

, 2 sin

2 1 при 0

2 1 при 0 sin .

2 cos 1 sin при 0

at at
n n n n

n

at atn
n n

nn

at at
n n n n

n

p x t p aw g x

a
a e ch D t e sh D t D

A
a e a te D x

a
a e D t e D t D

 




 





− −


− −

=

− −

= − + −

  
− − − +    
  
 

− − − + = 
 

  
− − + −    

  


 

Discussion of results 

Based on the presented material, a calculation program was compiled in the Pascal ABC 

environment, where the results were presented in the form of tables. Graphs were constructed 

using the Excel program . The characteristic equation was solved using the dichotomy method 

with an accuracy of 
1010−

. The first 1000 terms of the Fourier series were taken into account in 
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the calculations. The step along the length of the section was /100l , and the step along the time 

was ( )/ 10l c . The calculation was carried out from the 0th to the 600th time step. 

Cases ,0sin = 1.0 with a section length of 1000 m were considered . The section diameter 

was 20 cm, and the resistance coefficient 0.018 =  was . The averaging parameter had a value 

of смw /5=


, the density of the liquid in the unperturbed state was 
3/0.1000 мкг , and the 

propagation speed of small pressure disturbances was смс /1200= . 

The volume of the air cap connected to the end of the section was taken as 1.0, 0.100, 0.010, 

0.001, 0.0001 and 0.00001 cubic meters. The pressure in the air cap without voltage was taken as 

0 0.1p МПа= .  

 

Fig. 1. Temporal change in inlet velocity for different values of air cap volume 0V . 1000 ,l м=  

0.20 ,D м=  00 6.5 ,p МПа=  5 / ,Aw м с=  0.018, =  1200 / ,с м с=  
0 0.1 ,p МПа=  

sin 0 =  

Fig. 1 and 2 show the changes in the velocity value at the ends of the section for different values 

of the air cap volume. The lower graphs in them reflect the end velocities at 
3

0 1.000 .V м=

These graphs are not complete, since the flow velocity subsequently passes to its limiting value 

A
w . That is, at large volumes of the air cap, the establishment occurs slowly, but without 

oscillations. It is evident that at the end of the section where the air cap is installed, the amplitude 

of the velocity disturbances is lower than in the inlet section. It is evident that the end velocities 

increase monotonically. The graphs at 
3

0
1.0 мV = first increase from 0 to 5 см / , and then the 

oscillatory process is damped. Two conditional maxima are clearly visible in the graphs. More 

than three conditional maxima were observed in the graphs at 
3

0
0.00100V м= . 
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Fig. 2. Temporal change in the output velocity at different values of the air cap volume 0V  

 

Fig. 3. Temporary change in outlet pressure at different values of air cap volume 0V  

At smaller volumes of the air cap, the frequency of disturbances corresponds to the frequency of 

disturbances when the air cap is switched off. In general, when the volume of the damper 

decreases, the amplitude of the velocity disturbances at the ends of the section increases, and the 

frequency of disturbances increases. 

Let's move on to the analysis of the results obtained with positive ( )sin 0.100 =  and negative 

( )sin 0.100 = −  slopes of the route. 
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Fig. 4. Temporal changes in flow velocity in different sections of a linear section at 
3

0 0.010V м= .sin 0.100 =  

 

Fig. 5. Temporal changes in pressure in different sections of a linear section at 
3

0 0.010V м= . 

sin 0.100 =  

Fig. 4 shows graphs of the time change in flow velocity in different sections with 
3

0 0.010V м=  and maintaining the values of the remaining initial data. As can be seen from 

the figure, minor differences in the results are observed around the primary velocity extremes. 

The graphs of the time change of pressure in the sections corresponding to this calculation option 

are shown in Fig. 5. The fluctuations (oscillations) of the pressure relative to the average 

pressure value become noticeable with distance from the end of the section with the air cap. The 

second feature of the graphs is the decrease in the pressure value in the sections depending on the 

distance from the input section: an increase in distance leads to a greater pressure loss. In this 

case, such a nature of the pressure change is also due to the positive slope of the pipeline route, 

since a slope of was adopted sin 0.100 = .  
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Conclusions 

Taking into account the air cap included at the end of the section, a mathematical model of the 

state of an elementary inclined and horizontal section of the pipeline was compiled, when a 

constant pressure value is set at the inlet to the section, and a flow velocity at the outlet. In this 

case, quasi-one-dimensional equations of conservation of momentum and mass are adopted 

according to the model of N.E. Zhukovsky, taking into account the slope of the route, and the 

condition for the damper is according to I.A. Charny [1]. 

The Fourier method was used to obtain a solution to the problem of flow velocity, and the 

solution to the pressure dynamics was found by integrating the mass conservation equation. 

The results of calculations obtained for horizontal and inclined sections for different values of 

the air cap volume are discussed. It is revealed that at small values of the air cap volume, 

velocity and pressure disturbances are formed, the frequencies of which coincide with the 

frequencies of the solution of the problem without a damper. And at a large volume of the air 

cap, the transition from one mode to another operating mode occurs smoothly. 

The results showed that as the end of the air-bubble section was approached, the velocity and 

pressure oscillations decreased. 

It has been established that the frequency and amplitude of disturbances decrease with increasing 

volume of the air cap. With large volumes of the air cap, the settling time increases. 
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