

AUTOMATED WORKFLOW OPTIMIZATION SYSTEM FOR ENTERPRISE RESOURCE PLANNING

Andrew Lee

School of Engineering, University of Southern California, USA

Fransisco A Diaz

Researcher, Federal University of Minas Gerais, Brazil

Zaira Khan

Department of computer science, University of Bonn, Germany

Abstract

Enterprise resource planning (ERP) systems generate large amounts of invoice processing data that can be leveraged to optimize related workflows and reduce costs. However, current manual and template-based methods for ERP workflow optimization are inefficient and limited. This paper proposes an automated invoice workflow optimization system that utilizes artificial intelligence to analyze ERP invoice data and dynamically optimize workflows. The system collects comprehensive invoice process data and applies techniques like machine learning, process mining, and statistical analysis to identify workflow optimization opportunities. It then generates an improved target workflow by removing redundant steps, automating tasks, adjusting risk-based approval orders, and implementing other enhancements. A continuous feedback loop enables the system to learn from results and progressively improve over time. By combining data-driven analytics with AI-powered optimization algorithms, this intelligent system delivers superior, adaptive business process enhancements. This approach represents a major advancement over manual analysis and static best practice workflows for ERP optimization.

Keywords: ERP, Workflow system, invoice process, risk management.

Introduction

Companies frequently use enterprise resource planning (ERP) systems to manage various business processes like accounting, procurement, project management, risk management, and supply chain operations. The invoice process, which involves receiving invoices from suppliers, approving invoices, matching invoices to purchase orders, applying discounts or charges, scheduling payments, and reconciling accounts, is a key process that ERP systems manage.

Manually managing ERP invoice workflows can be time-consuming, labor-intensive, and prone to errors. Companies using ERP systems often have a need to optimize their invoice workflows to reduce costs and improve efficiency. However, optimizing workflows typically requires extensive analysis of process data by skilled personnel. There is a need for an automated system that can analyze ERP invoice processing data and optimize workflows.

Current workflow optimization methods rely heavily on manual analysis by business process experts. This analysis is based on examining workflow documentation and manually observing a small number of workflow instances. The expert will then try to identify

optimization opportunities based on limited data and human judgment. This approach is time-consuming, subjective, and results in suboptimal workflows due to a lack of comprehensive data.

Another approach commonly used is applying general best practice templates to improve workflow. However, these templates incorporate generic assumptions that may not apply to the specific process being optimized. Additionally, best practice templates remain static and do not continue to improve over time.

Automated business process optimization tools exist on the market, but they focus mainly on modeling, simulation, and monitoring capabilities. These tools allow businesses to model their workflows for analysis purposes and simulate the effects of changes, but they fall short of dynamically optimizing workflows. There is a need for a system that can combine intelligent analytics with automated optimization of real workflows.

An intelligent automated system that leverages artificial intelligence on workflow process data can overcome the limitations of current optimization methods. By automatically gathering comprehensive process data, applying data science techniques to identify optimization opportunities, generating improved workflow designs, and continuously learning from the results, such a system can provide superior business workflow improvements over time.

Summary:

This invention is an automated workflow optimization system that uses artificial intelligence (AI) to analyze ERP invoice processing data and optimize related workflows. The system includes a data collection module, a workflow analysis module, a workflow optimization module, and a learning module.

The data collection module gathers detailed data on ERP invoice processes, including steps, timing, personnel, approvals, exceptions, and bottlenecks. This data is aggregated into an analysis dataset. Sources of data include:

- Workflow logs that record the process instance steps, timing, and personnel as invoices are processed.
- Invoice data includes details of purchases, discounts, charges, reconciliation, etc.
- Personnel data such as roles, departments, and approval limits
- Exception logs that document errors or delays.
- Planning data such as process targets or schedules

The workflow analysis module uses AI algorithms to analyze the dataset and identify opportunities to streamline the invoice process. The analysis determines redundant or low-value steps, sources of delays, inefficient routing of work, and other process optimization opportunities.

Analysis techniques may include:

- Process mining algorithms that compare actual workflows to ideal models
- Machine learning to detect patterns and correlations in workflow data.
- Heuristic-based rules encoding internal best practices and human expertise.
- Statistical analysis reveals process bottlenecks and anomalies.

Based on the analysis, the workflow optimization module applies rules and heuristics to generate an optimized target workflow. The optimized workflow removes redundant approvals, changes sequential steps to parallel, sets approval orders based on risk, prioritizes high-value activities, and implements other enhancements.

Some examples of optimization actions include:

- Removing redundant invoice approvals that do not improve risk coverage.
- Enabling automated matching and confirmation for low-risk invoices

- Using conditional logic to route invoices to appropriate departments
- Setting invoice approval orders based on purchase category risk and thresholds.
- Automating the scheduling of recurring payments
- Alerting late invoices to speed up processing.
- Forecasting cash flow needs based on invoice due dates.

The learning module leverages continuous feedback to further improve the system over time. As optimized workflows are implemented, results are measured and fed back to the learning module. Metrics assessed may include cycle time, cost, quality, compliance, and user satisfaction.

Using techniques like reinforcement learning, new insights about optimal workflows are discovered from the results and incorporated into future versions. The system essentially learns from experience what optimizations work best.

By using AI to automatically analyze invoice processing data and optimize related workflows, this invention provides ERP users with streamlined workflows that reduce costs and errors while improving productivity. The ability of the system to learn over time provides increasing workflow improvements through a feedback loop. This invention represents a significant advancement in automated business process optimization.

System Architecture:

The automated workflow optimization system is comprised of integrated backend analysis modules and frontend user interface applications. These components may be implemented through a combination of custom software, existing enterprise software systems, and commercial AI services.

Backend modules:

- Data collection module: Extracts workflow data from sources like ERP, logs, and databases. May integrate with application APIs.
- Workflow analysis module: implements algorithms for process mining, machine learning, and other AI techniques. Could utilize cloud AI services.
- Workflow Optimization Module: Applies rules and heuristics to generate optimized workflows. May integrate with BPM software tools.
- Learning module: continuously improves the system based on results using reinforcement learning and similar algorithms.

Frontend applications:

- Data visualization dashboard displays workflow analytics and metrics to users through interactive graphs and charts.
- Optimization user interface allows users to review workflow changes and provide optimization feedback.
- Monitoring Dashboard: Enables tracking of optimized workflow metrics and KPIs.
- Notification module: Sends actionable alerts to users when optimized workflows are underperforming.

The system combines predictive analytics, intelligent optimization algorithms, and continuous learning in an integrated framework to deliver superior business process improvements over time. The use of cloud-based AI services, open-source software, and standardized interfaces enables scalable and cost-effective implementation.

Detailed Description:

Data Collection Module:

The data collection module gathers detailed data on current ERP invoice workflows to build an analysis dataset. Relevant data to collect includes:

Workflow audit logs that trace the steps, timing, personnel, and system events as each invoice is processed. Logs capture the actual workflow that was followed.

ERP data on invoices, purchase orders, supplier details, reconciliations, disputes, payments, etc. Provides context and details on invoice transactions.

Personnel data such as employee roles, departments, management hierarchy, and approval authority levels. Relevant for workflow routing, approvals, etc.

Planning data on workflow process targets, schedules, and service level agreements. Allows comparison to actual performance.

Exception data on process errors, delays, bottlenecks, and other issues. Valuable for identifying improvement opportunities.

External data, if available, such as supplier performance and risk metrics. Can inform workflow routing and approval rules.

Workflow KPIs and metrics calculated from other data sources. Examples are cycle time, cost, resource utilization, etc. Used to assess workflow performance.

The module integrates with various enterprise systems and data sources to extract relevant workflow data through standard or custom interfaces. Cloud-based ETL tools may be leveraged to consolidate data into a structured database or data lake for analysis. Appropriate data security, access control, and privacy measures are utilized during data collection and storage.

Workflow Analysis Module:

The workflow analysis module applies various AI techniques to the collected dataset to identify opportunities for improving the invoice workflow processes. The specific techniques may include:

Process mining algorithms that compare actual workflows traced in audit logs against ideal or standard models to detect deviations and bottlenecks. Conformance checking and automated process discovery methods can be used.

Machine learning classifiers that categorize workflow instances based on characteristics and detect patterns, correlations, and anomalies in the data. Supervised, unsupervised, or semi-supervised algorithms may be utilized.

Rules-based analysis using heuristics and business rules encoded from internal best practices, expert knowledge, and standard frameworks like ISO 9000. The rules help assess workflow efficiency, compliance, risk, etc.

Statistical analysis and modeling approaches such as multi-factor regression, hypothesis testing, and simulation modeling. These provide data-driven insights into workflow performance factors.

Natural language processing of text in invoices, disputes, correspondence, etc. to extract semantic insights and improve context for workflow decisions.

Graph database analysis of entities and relationships in workflow data to identify connectivity gaps, bottlenecks, and redundancy.

Benchmarking evaluation versus industry best practices, benchmarks, and process standards to assess performance gaps.

The analysis output identifies targeted improvements such as redundant steps to eliminate, serial processes to parallelize, approval changes to reduce risk, areas of chronic delay, and deviations from best practices. The optimization module uses these insights to design improved workflows.

Workflow Optimization Module:

The workflow optimization module generates an enhanced workflow design by applying optimization rules and heuristics based on the analysis from the previous module. Some examples of techniques include:

Streamlining by removing redundant approvals, unnecessary process steps that do not add value, or duplicate data entry

Automating manual workflows by implementing automated extraction, validation, reconciliation, and approval using robotic process automation

Improving risk coverage by dynamically routing invoices to approvers based on purchased item categories, supplier ratings, or expenditure thresholds.

Parallelizing workflows by changing sequential steps into simultaneous parallel tracks to reduce cycle time.

Prioritizing workflows by accelerating high-risk invoices and delaying low-risk ones without compromising compliance.

Load-balancing workflows by smoothing peaks and valleys in employee workloads. Prevents both overload and idle times.

Standardizing workflows by redirecting process deviations or exceptions to the standard flow unless justified. Enforces consistency.

Integrating workflows by linking disconnected systems and processes so data flows seamlessly. Eliminates manual hand-offs.

The optimization module quantifies the impact of proposed changes using process simulation and capacity modeling. It selects the optimal set of improvements that maximize workflow performance based on key metrics like cost, cycle time, and risk.

The module incorporates constraints and rules to ensure optimized workflows meet requirements for control, compliance, and risk management. All changes maintain strong governance standards.

Learning Module:

The learning module continually looks for ways to refine and improve the system over time based on results. The primary technique used is reinforcement learning, which optimizes decision-making by rewarding positive outcomes and penalizing negative outcomes.

In this system, reinforcement learning agents explore new workflow optimizations through simulation. Implemented workflow changes that yield improved performance metrics are rewarded to reinforce those types of optimizations. Changes that worsen performance are penalized to avoid repeating them.

Over many iterations, the agents learn correlations between workflow design changes and outcomes. This allows the optimization module to converge on global optima over time. The module becomes better at predicting the best optimizations for improved performance.

The learning module can also incorporate other algorithms like supervised neural networks that look for patterns in results data to independently derive new optimization insights. Transfer learning allows the leverage of best-practice data from external sources to speed up training.

The output of the learning module is an AI model that is constantly evolving to produce superior workflow optimizations tailored to the organization's unique processes and objectives.

System Integration:

The automated workflow optimization system integrates with several existing enterprise systems used for ERP, workflow management, and analytics. Standard interfaces typically used include:

REST APIs to programmatically exchange data with other applications. Both the data collection module and the optimization module use APIs extensively.

Database connectors to synchronize data with tables in relational databases or a data warehouse. This approach is useful for extracting large datasets.

Flat file imports load workflow logs, invoices, metrics, and other data from CSV, XLS, or delimited text files. Provides flexibility to ingest data in different formats.

message queuing integrators to pass events and data to workflow systems in real time as workflows execute. Enables detailed monitoring.

Webhooks are used to subscribe to events from external systems and trigger actions in response. The learning module may use webhooks to train models when new results are available.

ETL plugins to pull data from source systems into a data lake or warehouse. This handles large volumes of heterogeneous data.

B2B file transfers to exchange bulk data files with external organizations. Can obtain industry benchmarks or best practice data.

The system architecture is modular to enable integration via different mechanisms as needed for specific data sources and use cases. APIs and cloud services provide scalability to expand integration across the enterprise IT landscape.

User Interface Samples:

The system includes graphical user interfaces to provide workflow transparency to business users and obtain feedback. Sample interface mockups include:

Workflow analytics dashboard showing process metrics like cycle time and widgets highlighting top optimization opportunities.

Interactive workflow model allowing drill-down to see actual workflow steps, delays, and pain points overlaid on an ideal workflow.

Optimization recommendation interface with the ability to accept, reject, or modify proposed workflow changes. Captures user feedback.

predictive workflow simulator displaying estimated workflow metrics after applying proposed optimizations from the AI engine.

Monitoring dashboard with real-time status of optimized workflows and alerts for underperformance based on KPI thresholds.

mobile app allowing users to inspect active workflows, approve invoices, flag exceptions, and submit optimization ideas.

The flexible UI framework employs responsive design for accessibility across devices, user-centered design practices, and support for themes to match organization branding. The intent is to provide transparent, intuitive access to optimize workflows for all stakeholders.

Conclusion:

This paper presented an intelligent automated system to optimize ERP invoice workflows using AI and machine learning. The proposed system offers significant advantages over current manual, template-based methods by leveraging comprehensive process data analysis, intelligent optimization algorithms, and continuous learning for progressive enhancements. The integrated modules for data collection, workflow analysis, optimization, and feedback-driven learning enable data-driven improvements not achievable through human experts alone. Implementing this system can help companies streamline operations, reduce costs, improve productivity, enhance compliance, and adapt quickly to changes. The automated approach also lowers dependence on specialized consultants. The architecture supports scalable deployment via cloud services and APIs. While further research is needed to address challenges like data security, the overall approach represents a major step forward in intelligently optimizing business processes.

In conclusion, this paper demonstrates the feasibility and benefits of applying AI and machine learning techniques to analyze real-world ERP workflow data and automatically generate optimized processes. The proposed continuous learning system promises to deliver increasing workflow improvements over time tailored to each organization. The innovation of combining predictive analytics, optimization algorithms and feedback loops can be extended to optimize many other business processes beyond ERP invoices.

References

1. HassabElnaby, H.R., Hwang, W. and Vonderembse, M.A., 2012. The impact of ERP implementation on organizational capabilities and firm performance. *Benchmarking: An International Journal*.
2. M, Paul. 2020. "ERP Software Market Size, Share and Trends Analysis Report by Solution, by Function, by Deployment, by Organization Size, by Vertical, and Segment Forecasts, 2020 - 2025." Grand Research. <https://www.grandviewresearch.com/industry-analysis/enterprise-resource-planning-erp-market>.
3. Weng, Fengjing, and Hung-Chang Chuang. 2020. "Factors Affecting Individuals to Adopt Cloud ERP." *Information Systems Frontiers* 22 (3): 705–15.
4. Kanchymalay, Kasturi, Salina Daud, and Zakiyah Zainol. 2021. "The Security Concerns of Cloud-Based ERP System." *Procedia Computer Science* 191: 429–34.
5. .Coalfire. 2020. "Cloud ERP Security Study." <https://www.coalfire.com/Coalfire/media/Coalfire/Resources/Whitepapers/Coalfire-Cloud-ERP-Security-Study.pdf>.
6. Nilsson, Nils J. 2009. *The Quest for Artificial Intelligence*. Cambridge University Press.
7. Metcalf, Jacob, Emily F. Keller, and Danah Boyd. 2021. "Artificial Intelligence Is Harder than You Think: Four Challenges in Developing AI Systems." *IEEE Security & Privacy* 19 (3): 73–76.
8. Wigmore, Ian. 2021. "Can Cloud ERP Be Secure?" <https://erpinnews.com/can-cloud-erp-be-secure/>.
9. Singh, Mithilesh Kumar, and Surya Prakash. 2021. "Secure Sharing and Accessing of Data on Cloud-Based ERP System Using Hybrid Cryptosystem." *Journal of Ambient Intelligence and Humanized Computing*, October.
10. Taher, Younes, Mohammed Amine Chatti, Ulrike Lucke, and Monique Snoeck. 2021. "Explainable Artificial Intelligence for Cyber Threat Intelligence and Information Analysis." 2021 IEEE 25th International Conference on Computer Supported Cooperative Work in Design (CSCWD), 650–57.
11. Faniyi, Femi, Rami Bahsoon, Lukasz Radlinski, Marcio Katsumi Oikawa, Theo Lynn, and Mathew Palakal. 2022. "Engineering AI-Based Systems for Dynamic Adaptation of Security Configurations in the Cloud." *Future Generation Computer Systems* 138 (April): 687–701.
12. Haider, Waqar, Suleman Mazhar, Umar Farooq, and Usman Qamar. 2020. "Predicting Vulnerabilities in Open Source Web Applications and Web APIs Using Machine Learning Algorithms." *Applied Sciences* 10 (21): 7832.
13. Karafiloski, Elena, and Anastas Mishev. 2017. "Blockchain solutions for big data challenges: A literature review," IEEE EUROCON 2017 -17th International Conference on Smart Technologies, Ohrid, 2017, pp. 763-768.

14. West, Jessica, and Matthew Sutherland. 2022. "AI for the Enterprise: Cybersecurity and Automation." Brookings. January 24, 2022. <https://www.brookings.edu/research/ai-for-the-enterprise-cybersecurity-and-automation/>.
15. Tankard, Colin. 2018. "GDPR Compliance Using Data Loss Prevention." Digital Guardian. April 19, 2018. <https://digitalguardian.com/blog/gdpr-compliance-using-data-loss-prevention-dlp>.
16. Arjun Reddy Kunduru. (2023). Healthcare ERP Project Success: It's all About Avoiding Missteps. Central Asian Journal of Theoretical and Applied Science, 4(8), 130-134. Retrieved from <https://cajotas.centralasianstudies.org/index.php/CAJOTAS/article/view/1268>
17. Chronicle Security. 2022. "Chronicle Security from Google Cloud." <https://chronicle.security/why-chronicle/> .
18. Microsoft. 2022. "Microsoft AI for Cybersecurity." <https://www.microsoft.com/en-us/ai/ai-for-cybersecurity?activetab=pivot1%3aprimaryr6>.
19. Amazon Web Services. 2022. "Security, Identity & Compliance." <https://aws.amazon.com/products/security/>.
20. ClearSky Cybersecurity. 2021. "ClearSky's ERP Security Platform." <https://www.clearskysec.com/>.
21. [36] .Darktrace. 2021. "Cyber AI to Protect SaaS Collaboration Tools." <https://www.darktrace.com/en/saas/>.
22. VentureBeat. 2019. "Mosaic Launches Zeke, an AI-Powered Security Assistant for Cybersecurity Teams." <https://venturebeat.com/2019/10/29/mosaic-launches-zeke-an-ai-powered-security-assistant-for-cybersecurity-teams/>.
23. Cambria, E. and White, B., 2014. Jumping NLP curves: A review of natural language processing research [Review article]. *IEEE Computational intelligence magazine*, 9(2), pp.48-57.
24. [Asatiani, Aleksandre, Penti Hirvonen, Esko Penttinen, Tiina Rinta-Kahila, and Jukka Salimäki. 2022. "The Motives, Benefits and Challenges of Adopting Robotic Process Automation (RPA) in Auditing." *International Journal of Accounting Information Systems* 43 (March): 100498.
25. [Tien, James M. 2013. "Big Data: Unleashing Information." *Journal of Systems Science and Systems Engineering* 22 (2): 127–51.
26. Ward, Logan, Nabil Kashyap, Mikhail Sizov, and Jennifer Parham. 2021. "Artificial Intelligence and the Future of Cloud Computing: A Security and Privacy Perspective." *Artificial Intelligence and Cloud Security*, July, 71–103.
27. Stonebraker, Michael, Daniel Bruckner, Ihab F Ilyas, George Beskales, Mitch Cherniack, Stanley B. Zdonik, Alexander Pagan, and Shan Xu. 2013. "Data Curation at Scale: The Data Tamer System." In *CIDR 2013, Sixth Biennial Conference on Innovative Data Systems Research*, Asilomar, CA, USA, January 6-9, 2013, Online Proceedings. www.cidrdb.org.